

ADVANCED SUBSIDIARY GCE MATHEMATICS

Further Pure Mathematics 1

4725

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Wednesday 20 January 2010 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

1 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} a & 2 \\ 3 & 4 \end{pmatrix}$ and **I** is the 2 × 2 identity matrix.

- (i) Find A 4I. [2]
- (ii) Given that A is singular, find the value of *a*. [3]
- **2** The cubic equation $2x^3 + 3x 3 = 0$ has roots α , β and γ .
 - (i) Use the substitution x = u 1 to find a cubic equation in u with integer coefficients. [3]
 - (ii) Hence find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$. [2]
- 3 The complex number z satisfies the equation $z + 2iz^* = 12 + 9i$. Find z, giving your answer in the form x + iy. [5]
- 4 Find $\sum_{r=1}^{n} r(r+1)(r-2)$, expressing your answer in a fully factorised form. [6]
- 5 (i) The transformation T is represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Give a geometrical description of T. [2]
 - (ii) The transformation T is equivalent to a reflection in the line y = -x followed by another transformation S. Give a geometrical description of S and find the matrix that represents S. [4]
- 6 One root of the cubic equation $x^3 + px^2 + 6x + q = 0$, where p and q are real, is the complex number 5 i.
 - (i) Find the real root of the cubic equation. [3]
 - (ii) Find the values of p and q. [4]

7 (i) Show that
$$\frac{1}{r^2} - \frac{1}{(r+1)^2} \equiv \frac{2r+1}{r^2(r+1)^2}$$
. [1]

(ii) Hence find an expression, in terms of *n*, for $\sum_{r=1}^{n} \frac{2r+1}{r^2(r+1)^2}$. [4]

(iii) Find
$$\sum_{r=2}^{\infty} \frac{2r+1}{r^2(r+1)^2}$$
. [2]

- 8 The complex number *a* is such that $a^2 = 5 12i$.
 - (i) Use an algebraic method to find the two possible values of *a*. [5]
 - (ii) Sketch on a single Argand diagram the two possible loci given by |z a| = |a|. [4]

2

9 The matrix **A** is given by $\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & a \end{pmatrix}$, where $a \neq 1$.

- (i) Find A^{-1} .
- (ii) Hence, or otherwise, solve the equations

$$2x - y + z = 1,
3y + z = 2,
x + y + az = 2.$$
[4]

[7]

10 The matrix **M** is given by $\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

(i) Find
$$\mathbf{M}^2$$
 and \mathbf{M}^3 . [3]

- (ii) Hence suggest a suitable form for the matrix Mⁿ.
 (iii) Use induction to prove that your answer to part (ii) is correct.
- (iv) Describe fully the single geometrical transformation represented by \mathbf{M}^{10} . [3]

4725 Further Pure Mathematics 1

1 (i)	$\begin{pmatrix} a-4 & 2 \\ 3 & 0 \end{pmatrix}$	B1 B1	2	Two elements correct Remaining elements correct
(ii)	$4a - 6$ $a = \frac{3}{2}$	B1 M1 A1 5	3	Correct determinant Equate det A to 0 and solve Obtain correct answer a. e. f.
2 (i)	$u^{3} - 3u^{2} + 3u - 1$ $2u^{3} - 6u^{2} + 9u - 8 = 0$	B1 M1 A1	3	Correct unsimplified expansion of $(u-1)^3$ Substitute for <i>x</i> Obtain correct equation
(ii)	4	M1 A1ft 5	2	Use $(\pm)\frac{d}{a}$ of new equation Obtain correct answer from their equation
3	x - iy $x + 2y = 12 2x + y = 9$ $z = 2 + 5i$	B1 M1 A1 M1 A1	5	Conjugate known Equate real and imaginary parts Obtain both equations, OK with factor of i Solve pair of equations Obtain correct answer as a complex number S.C. Solving $z + 2iz = 12 + 9i$ can get max 4/5, not first B1
4	$\frac{1}{4}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) - n(n+1)$ $\frac{1}{12}n(n+1)(n+2)(3n-7)$	M1 M1 A1 M1 A1 A1 6	6	Express as sum of three series Use standard results Obtain correct unsimplified answer Attempt to factorise Obtain at least factor of $n(n+1)$ Obtain fully factorised correct answer

5 (i)		B1 B1 2	Rotation 90° (about origin) Anticlockwise
(ii)	Either	M1	Show image of unit square after reflection in $y = -x$
	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	A1	Deduce reflection in <i>x</i> -axis
	Or	B1ft B1ft 4 M1	Each column correct ft for matrix of their transformation Post multiply by correct reflection matrix
			Obtain correct answer State reflection, in <i>x</i> -axis C. If pre-multiplication, M0 but B1 B1 Available for correct description of their matrix
		6	
6 (i)		B1 M1	State or use $5 + i$ as a root Use $\sum \alpha \beta = 6$
	x = -2	A1 3	Obtain correct answer
(ii)	Either	M1	Use $p = -\sum \alpha$
	p = -8	A1ft M1	Obtain correct answer, from their root Use $q = -\alpha\beta\gamma$
	<i>q</i> = 52	A1ft 4	Obtain correct answer, from their root
	Or	M1 M1 A1A1	Attempt to find quadratic factor Attempt to expand quadratic and linear Obtain correct answers
	Or	M1 M1 A1 A1ft 7	Substitute $(5 - i)$ into equation Equate real and imaginary parts Obtain correct answer for p Obtain correct answer for q , ft their p
7 (i)		B1 1	Obtain given answer correctly
 (ii)	$1 - \frac{1}{(n+1)^2}$	M1 A1 M1 A1 4	Express at least 1 st two and last term using (i) All terms correct Show that correct terms cancel Obtain correct answer, in terms of <i>n</i>
	1		
(iii)	$0 - \frac{1}{4}$	B1 B1 2	Sum to infinity seen or implied
		B1 2	Obtain correct answer S.C ³ / ₄ scores B1
		7	

4725

8 (i)		M1	Attempt to equate real and imaginary parts of $(x + iy)^2 \& 5 - 12i$
	$x^2 - y^2 = 5$ and $xy = -6$	A1	Obtain both results, a.e. f
		M1	Obtain quadratic in x^2 or y^2
		M1	Solve to obtain $x = (\pm)^3$ or $y = (\pm)^2$
	$\pm (3 - 2i)$	A1 5	Obtain correct answers as complex nos
<i>a</i> uo <i>r</i> o 1	(ii)		B1ft Circle with centre at their
quare 1	1001	B1	Circle passing through origin
		B1ft	2^{nd} circle centre correct relative to 1^{st}
		B1 4	Circle passing through origin
		9	
) (i)		M1	Show correct expansion process for 3×3 or multiply adjoint by A
		M1	Correct evaluation of any 2×2 at any
	$\det \mathbf{A} = \Delta = 6a - 6$	A1	stage Obtain correct answer
	$\det \mathbf{A} - \Delta = 6a - 6$	AI	Obtain correct answer
	(3a-1 a+1 -4)		
	$\mathbf{A}^{-1} = \frac{1}{\Delta} \begin{pmatrix} 3a-1 & a+1 & -4 \\ 1 & 2a-1 & -2 \\ -3 & -3 & 6 \end{pmatrix}$	M1	Show correct process for adjoint entries
		A1	Obtain at least 4 correct entries in
		B1	adjoint Divide by their determinant
			Obtain completely correct answer
(;;)	(5.7)	M1	Attempt product of form $\mathbf{A}^{-1}\mathbf{C}$ or
(ii)	$\frac{1}{\Delta} \begin{pmatrix} 5a-7\\4a-5\\2 \end{pmatrix}$	1111	eliminate to get 2 equations and solve
	$\Delta \left(\begin{array}{c} 3 \end{array} \right)$		Obtain correct answer
		ft all 3 4	S.C. if det now omitted, allow max A2 f
		11	
0 (;)			
l0 (i)		B1	Correct M ² seen
	$\mathbf{M}^2 = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \mathbf{M}^3 = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}$	M1	Convincing attempt at matrix
			multiplication for \mathbf{M}^3
		A1 3	Obtain correct answer
	$\mathbf{M}^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}$	B1ft 1	State correct form, consistent with (i)

4725	Mark Scheme	January 2010
10 (iii)	M1	Correct attempt to multiply $\mathbf{M} \& \mathbf{M}^k$ or v.v.
	A1	Obtain element 2($k + 1$)
	A1	Clear statement of induction step, from correct working
	B1 4	Clear statement of induction conclusion, following their working
(iv)	B1	Shear
(**)	DB1	<i>x</i> -axis invariant
	DB1 3	e.g. $(1, 1) \rightarrow (21, 1)$ or equivalent using scale factor or angles
	11	using scale factor of aligits